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Background: Fermented black ginseng (FBG) is produced through several cycles of steam treatment of
raw ginseng, at which point its color turns black. During this process, the original ginsenoside compo-
nents of raw ginseng (e.g., Re, Rg1, Rb1, Rc, and Rb2) are altered, and less-polar ginsenosides are
generated (e.g., Rg3, Rg5, Rk1, and Rh4). The aim of this study was to determine the effect of FBG on
wound healing.
Methods: The effects of FBG on tube formation and on scratch wound healing were measured using
human umbilical vein endothelial cells (HUVECs) and HaCaT cells, respectively. Protein phosphorylation
of mitogen-activated protein kinase was evaluated via Western blotting. Finally, the wound-healing ef-
fects of FBG were assessed using an experimental cutaneous wounds model in mice.
Results and Conclusion: The results showed that FBG enhanced the tube formation in HUVECs and
migration in HaCaT cells. Western blot analysis revealed that FBG stimulated the phosphorylation of p38
and extracellular signal-regulated kinase in HaCaT cells. Moreover, mice treated with 25 mg/mL of FBG
exhibited faster wound closure than the control mice did in the experimental cutaneous wounds model
in mice.
� 2017 The Korean Society of Ginseng, Published by Elsevier Korea LLC. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Healing of a wound in the human tissue can be defined as a
complex process that restores not only the anatomical integrity
but also function by injury [1,2]. The phases of wound healing
include inflammation, proliferation, granulation tissue formation,
re-growth of epithelial tissue, and remodeling of new tissue for the
recovery of tissue integrity [3,4]. Among these, the newly formed
blood vessels play a crucial role in the formation of tempo-
rary granulation tissue and supply of oxygen and nutrients in
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replacement of tissues [5e7]. The expressions of proangiogenic
growth factors, including fibroblast growth factor (FGF), trans-
forming growth factor-b (TGF-b), vascular endothelial growth
factor (VEGF), and angiopoietins, are important in wound angio-
genesis [5]. VEGF is most essential in the initiation step of angio-
genesis as it increases vascular permeability [8] as well as
promotes endothelial cell proliferation and migration [9e11]. FGF-
2, also called basic FGF, promotes endothelial cell differentiation
and proliferation as a strong mitogenic factor [12,13]. VEGF and
FGF-2 act cooperatively to promote angiogenesis [14e16]. TGF-b
e and Technology, Gangneung 25451, Republic of Korea.
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regulates capillary tubule formation, endothelial cell migration,
proliferation, and extracellular matrix deposition [17e19].

Ginseng is one of the species of genus Panax which comprises
several species of slow-growing perennial plants [20]. It is
considered as one of the most important herbal medicine with
various health benefits arising from consumption of the root and its
extracts [21,22]. The medicinal efficacies of ginseng identified by
modern science include cancer prevention, analgesia, enhanced
immune function, blood pressure normalization, enhanced liver
function, anti-stress, anti-oxidative, and anti-fatigue effects,
improved sexual functions, improved climacteric disorder, as well
as anti-aging effects [23]. The active components of ginseng are
ginsenosides which have a steroid-like structure and are divided
into three types according to their aglycones: protopanaxadiol
(PPD), protopanaxatriol, and oleanoic acid ginsenosides [24]. Fer-
mented black ginseng (FBG) is produced through several cycles of
steam treatment of raw ginseng, at which point its color turns black
[25]. During this process, the original ginsenoside components of
raw ginseng (e.g., Re, Rg1, Rb1, Rc, and Rb2) are altered and less-
polar ginsenosides are generated (e.g., Rg3, Rg5, Rk1, and Rh4) [26].

In this study, we aim to assess the influence of FBG, which in-
cludes various bioactive ingredients, on wound healing by in vitro
and in vivo experiments and to verify the possibility of using FBG as
a wound healing medical ingredient.

2. Materials and methods

2.1. Reagents and chemicals

EZ-Cytox cell viability assay kit was obtained from ITSBIO (Seoul,
Korea). Fetal bovine serum (FBS) was purchased from Invitrogen Co.
(Grand Island, NY, USA). Primary antibodies for p38, extracellular
signal-regulated kinase (ERK), phosphorylated-p38 (p-p38), and
phosphorylated-ERK (p-ERK), and secondary antibodies were pur-
chased from Cell Signaling Technology, Inc. (Danvers, MA, USA).

2.2. Preparation of ginseng extract and ginsenoside

Dried powder of FBG extract was provided by GINSENG BY
PHARM Co., Ltd. (Wonju, Korea), which produced FBG extract by a
recently reported method [27]. In brief, black ginseng was first
generated after nine cycles of repeated steaming of raw ginseng at
85�C for 8 h. The produced black ginseng extract was further fer-
mented with Saccharomyces cerevisiae (Lallemand, Denmark) at
34�C for 25 h. PPD, which is known to be effective in wound
healing, was used as a positive control and was prepared as re-
ported previously [22,25].

2.3. Analysis of ginsenosides

By using YL9100 HPLC system (Young-Lin, Anyang, Korea) fitted
with a C-18, reversed-phase column (5 mm, 150 cm � 4.6 mm i.d.;
YMC-Pack NH2, Kyoto, Japan) utilizing a solvent gradient system,
ginsenoside samples were analyzed at a flow rate of 1 mL/min. The
mobile phase consisted of 15% acetonitrile containing 5% acetic acid
Table 1
Comparison of contents of ginsenosides between red ginseng and fermented black ginse

Sample

Re Rg1

Red ginseng 0.016 � 0.006 0.132 � 0.012
FBG 0.094 � 0.009 0.047 � 0.005

FBG, fermented black ginseng.
(solvent A) and 80% acetonitrile (solvent B). The model of evapo-
rative light scattering detector was YL9180 (Young-Lin, Anyang,
Korea). Gradient elution was carried out as follows: 0 min, 0% B;
6 min, 30% B; 18 min, 50% B; 30 min, 100% B; and 37 min, 100% B.
Identification of ginsenosides was performed by the comparison of
retention times with authentic samples (Table 1).

2.4. Cell culture

Human umbilical vein endothelial cells (HUVECs) and HaCaT
cells, an immortalized keratinocyte cell line from adult human skin,
were purchased from ATCC (Manassas, VA, USA). HUVECs were
cultured in Clonetics EGM-2 MV BulletKit (Lonza Inc., Walkersville,
MD, USA) in a humidified atmosphere (5% CO2, 95% air). HaCaT cells
were cultured using the media supplemented with penicillin (100
units/mL), streptomycin (100 mg/mL), and 10% FBS at 37�C (5% CO2,
95% air). The cells were passed on reaching about 70e80% conflu-
ence. The number of cells was calculated when cells were plated
according to each experimental design.

2.5. Cell viability assay

The cytotoxicity of FBG and PPD to HUVECs and HaCaT cells was
assessed using the EZ-Cytox cell viability assay. In brief, cells were
seeded at a density of 2 � 104 cells/mL in 96-well plates. The cells
were then treated with various concentrations of FBG extract or
PPD and incubated for 24 h at 37�C in a humidified atmosphere of
5% CO2 and 95% air. After treatments, cell viability was measured
according to manufacturer’s instructions.

2.6. Tube formation assay

Cells were seeded (2.5 � 105 cells/mL) onto the Matrigel-coated
plate. Media, with or without sample, was added. The plates were
then incubated at 37�C for 24 h. After incubation, the cells were
fixed with 4% paraformaldehyde, followed by staining with Mayer’s
hematoxylin (Muto Pure Chemicals, Tokyo, Japan). Cell morphology
changes and tubular-structure formation were observed using a
light microscope. The degree of tube formation was quantified by
measuring the lengths of the tubes in the images captured using
the ImageJ program.

2.7. Western blotting analysis

HUVECs (8 � 105 cells/mL) grown in 60 mm dishes were treated
with the various concentrations of FBG extract (12.5 mg/mL and
25 mg/mL) for 24 h. Next, cell extracts were prepared using RIPA
buffer (Cell Signaling, Danvers, MA, USA) that was supplemented
with 1� protease inhibitor cocktail and 1mM phenyl methyl sul-
fonyl fluoride. Proteins (30 mg/lane) were separated by electro-
phoresis, transferred onto polyvinylidene fluoride membranes, and
allowed to bind with epitope-specific primary and secondary an-
tibodies. Visualization of antibody bounding was confirmed using
ECL Advance Western Blotting Detection Reagents (GE Healthcare,
ng (FBG)

Content (mg/mg extract)

Rb1 Rd Rg3

0.578 � 0.038 14.995 � 1.137 2.190 � 0.093
d d 4.159 � 0.106



J Ginseng Res 2018;42:524e531526
Buckinghamshire, UK) and a LAS 4000 imaging system (Fujifilm,
Tokyo, Japan) following instruction manual.

2.8. Cell scratch wound healing assay in HaCaT cells

The scratch wound assay was assessed by cell migration after
formation of scratch in the cell monolayer. Briefly, HaCaT cells were
plated in 35-mmdish at a density of 8� 105 cells/mL. The following
day, scratch wounds were formed in the HaCaT cell monolayer
using a sterile pipette tip. The culture medium was changed with
fresh serum-free medium and FBG (25 mg/mL) was added after
washing away detached cells. After incubating for 12 h and 24 h, the
wound width was measured at randomly chosen points under a
light microscope equipped with a digital camera. The extent of
wound closure was measured as the percentage compared to the
original scratch width that had decreased at each measured time
point.

2.9. Wound healing effect in an experimental cutaneous wounds
model in mice

Animal testing regulations were approved by the animal
research and ethics committee of Gachon University. Male ICR mice
(age, 5 wk) were purchased from Orient Bio Co., Ltd. (Seongnam,
Korea) and were allocated into three experimental groups. Under
light anesthesia with ethyl ether, a 5-mm full-width excisional skin
wound was made in the shaved back of each mouse. Then, each
wound in mice was treated with phosphate-buffered saline (PBS)
containing 0.5% dimethyl sulfoxide (DMSO) or FBG (25 mg/mL)
dissolved in PBS containing 0.5% DMSO daily. The sample was
treated with 10 mL of the solution once a day. The wound images of
mice were captured on 0 d, 2 d, 4 d, 6 d, and 8 d using a digital
camera. The quantification of wound healing was estimated by
calculation of the remained area of wound at 0 d, 2 d, 4 d, 6 d, and
8 d after formation of wounds for each group. ImageJ software was
Fig. 1. Representative HPLC chromatogram of fermented black ginseng (FBG). Ginsenoside s
gradient system. Identification of ginsenosides was performed by comparison of retention
used for the calculation of wound-size measurements. Briefly, the
calculation of percentage wound closure was presented as follows:
[(area of original wound (Day 0) e area of actual wound at 0 d, 2 d,
4 d, 6 d, and 8 d)/area of original wound (Day 0)] � 100.
2.10. Statistical analysis

Statistical significance was assessed using analysis of variance,
followed by multiple comparison analysis with a Bonferroni
adjustment. A p value of less than 0.05 was considered to be sta-
tistically significant.
3. Results and discussion

Wound healing progresses through the consecutive and syner-
gistic remodeling phases that lack or overlap temporal distinction,
including phases of inflammation, wound contraction, re-
epithelialization, and maturation. The inflammatory phase occurs
in a few days after wounding, and inflammatory cells such as
macrophages and leukocytes are the major participants [28,29].
During the healing process that provides the delivery of nutrients
and oxygen, angiogenesis is the most critical step. Angiogenesis is
modulated by the expression of various vascular growth factors and
modulators [30]. In this paper, we have demonstrated that FBG
enhances angiogenesis in vitro and wound healing in vivo.
3.1. Analysis of ginsenosides in FBG extract

The HPLC profile of FBG extract is illustrated in Fig. 1. A quan-
titative analysis revealed that FBG contains ginsenoside Re
(0.09 mg/g), Rg1 (0.05 mg/g), and Rg3 (4.16 mg/g).
amples were analyzed using HPLC system fitted with a C-18 column utilizing a solvent
times with authentic samples.
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3.2. Effects of the FBG and PPD on cell viability

Proliferation of cells such as endothelial cells and fibroblasts is
essential for effective wound healing [11]. Therefore, we first
investigated the effects of various concentrations of FBG and PPD
on the viability of HUVECs using an MTT assay. As shown in Fig. 2A,
FBG reduced the viability of HUVECs slightly in a treatment dose-
dependent manner. The cell viability (percent of control) ranged
from 97.2� 2.56% (1.5625 mg/mL FBG) to 89.02 � 1.49% (100 mg/mL
FBG). At 100 mg/mL, FBG inhibited the viability of HUVECs by
10.98%. Compared with no effect with treatment of � 25 mg/mL of
FBG on HUVEC proliferation, cell viability was slightly decreased
with the treatment of 50e100 mg/mL of FBG. As shown in Fig. 2B,
the proliferation of HUVECs was reduced by PPD in a treatment
dose-dependent manner. The cell viability (percent of control)
Fig. 2. The effects of fermented black ginseng (FBG) and protopanaxadiol (PPD) on human u
treated with FBG in various concentrations (1.5625e100 mg/mL) or with 0.5% dimethyl sulfox
assay. (B) Cells were treated with PPD in various concentrations (1.5625e100 mM) or with 0
assay. (C) Photographs of tube formation of HUVECs with or without FBG (12.5 mg/mL and 2
mM for U0126 and SB203580. (D) The relative lengths of tubes were quantified using ImageJ
protopanaxadiol.
ranged from 102.02 � 1.79% (1.5625 mM PPD) to 16.34 � 1.92% (100
mM PPD). PPD inhibited the viability of HUVECs by 83.66% at 100
mM concentration. Treatment with � 12.5 mM PPD exerted no effect
on HUVEC viability, whereas treatment with 25e100 mM inhibited
its cell viability.

3.3. Effects of FBG and PPD on tube formation in HUVECs

The effect of non-toxic concentrations of FBG and PPDwas tested
on tube formation in HUVECs. FBG (doses of 12.5 mg/mL and 25 mg/
mL) and PPD (doses of 6.25 mM and 12.5 mM) were used to test their
effects on the tube formation in HUVECs (Figs. 2C and 2D). As
shown in Fig. 2D, treatment with FBG and PPD increased tube for-
mation, as estimated by the number of branching points. FBG
(12.5 mg/mL) and PPD (12.5 mM) increased the tube formation by
mbilical vein endothelial cell (HUVEC) proliferation and tube formation. (A) Cells were
ide (DMSO) only (control) for 24 h, followed by evaluation of cell viability by EZ-Cytox
.5% DMSO only (control) for 24 h, followed by evaluation of cell viability by EZ-Cytox
5 mg/mL) or PPD (6.25 mM and 12.5 mM) after 24h. The inhibitor concentrations were 5
software. *p < 0.05 compared to the control value. FBG, fermented black ginseng; PPD,



J Ginseng Res 2018;42:524e531528
20.3% and 29.53%, respectively, comparedwith the control cells. The
phosphorylation of p38 and ERK has been suggested to be critical
for tube formation. To determine the involvement of the pathways,
the cells were treated with specific inhibitors of p38 (SB203580)
and ERK (U0126). These inhibitors suppressed the enhancement of
tube formation in the presence of FBG (Fig. 2C and 2D).
3.4. Effects of FBG on angiogenic protein expression in HUVECs

The activation of p38 and ERK mitogen-activated protein ki-
nases (MAPKs) signaling proteins are known to be involved in the
main signaling pathways for migration and proliferation of endo-
thelial cells [31,32]. Therefore, we investigated the effects of FBG on
the phosphorylation of ERK and p38 MAPKs. Western
Fig. 3. (A) The effect of fermented black ginseng (FBG) on protein expressions of vascular
phosphorylated-ERK (p-ERK) in human umbilical vein endothelial cells (HUVECs). (B) West
with FBG at a various concentrations for 24 h. The inhibitor concentrations were 5 mM for
transferred onto polyvinylidene fluoride membranes, and treated with the indicated an
*p < 0.05 compared to the control value. ERK, extracellular signal-regulated kinase; FBG, f
VEGF, vascular endothelial growth factor.
blotting analysis was performed to explore the effect of FBG on the
activation of MAPK signaling pathway in HUVECs (Fig. 3A). As
quantified in Fig. 3B, the Western blot analysis showed that the
levels of VEGF (1.71 � 0.02 and 2.08 � 0.03 fold at 12.5 mg/mL and
25 mg/mL FBG, respectively), p-p38 (1.54 � 0.03 and 1.79 � 0.02
fold at 12.5 mg/mL and 25 mg/mL FBG, respectively), and p-ERK
(1.24 � 0.01 and 1.57 � 0.03 fold at 12.5 mg/mL and 25 mg/mL FBG,
respectively) were markedly increased in the cells treated with FBG
as compared to the non-treated control cells. The phosphorylation
of p38 stimulated with FBG was completely inhibited by SB203580
(Fig. 3B). In addition, the treatments of specific inhibitors for ERK
(U0126) decreased the phosphorylation of ERK. However, the
phosphorylation of ERK by treatment with FBG was upregulated in
the presence of SB203580 (Fig. 3B).
endothelial growth factor, p38, p-p38, extracellular signal-regulated kinase (ERK), and
ern blotting results show the levels of p-p38, p38, p-pERK, and ERK in HUVECs treated
U0126 and SB203580. Whole cell lysates (30 mg) were electrophoresed by SDS-PAGE,
tibodies. The targeted proteins were then visualized using ECL detection reagents.
ermented black ginseng; p-ERK, phosphorylated-extracellular signal-regulated kinase;
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3.5. Effects of FBG on cell scratch wound healing and proliferation
in HaCaT cells

The effect of FBG on the scratch wound healing in HaCaT cells
was tested using a cell-based wound healing model in which
scratch wounds were formed in the HaCaT cell monolayer (Fig. 4A).
The repaired percentage of scarification in the presence of 25 mg/mL
of FBG was 45.8% at 24 h (Fig. 4B). However, various concentrations
of FBG had no toxic effects on HaCaT cell proliferation (Fig. 4C).
Scratch wounds in the culture containing FBG was inhibited with
U0126 and SB203580 (Figs. 4A and 4B). From these findings, we
Fig. 4. The effects of fermented black ginseng (FBG) on scratch wound healing and proliferat
healing assay in HaCaT cells. Images from the same area were captured 0 h and 24 h after w
Scratch wound healing of FBG-treated HaCaT cells was detected using the scratch wound h
closure. (C) Cells were treated with FBG in a various concentrations (1.5625e100 mg/mL) o
viability by EZ-Cytox assay. *p < 0.05 compared to the control value. FBG, fermented black
concluded that U0126 and SB203580 suppress the phosphorylation
of ERK and p38, respectively, resulting in an apparent decrease of
wound healing.

3.6. Effects of FBG on an experimental cutaneous wounds model in
mice

Considering that FBG has significant effects in promoting
migration and tube formation of HUVECs and HaCaT cells, we
further employed an experimental cutaneous wounds model in
mice to verify whether topical application of FBG may modify the
ion in HaCaT cells. (A) Scratch wound healing was evaluated using a cell-scratch wound
ound infliction. The inhibitor concentrations were 5 mM for U0126 and SB203580. (B)
ealing assay. Quantification of migration was calculated as a percentage of the wound
r with 0.5% dimethyl sulfoxide only (control) for 24 h, followed by evaluation of cell
ginseng.



Fig. 5. The effects of fermented black ginseng (FBG) on wound healing in an experimental cutaneous wounds model in mice. (A) Comparison in wound closure between two groups
(mice treated with 25 mg/mL FBG and the control mice). Representative photographs for the wounds at Day 0, Day 2, Day 4, Day 6, and Day 8 after treatments. (B) Quantitative
analysis for wound size in the FBG-treated groups compared with that of the control group after 2 d. *p < 0.05 compared to the control value. FBG, fermented black ginseng.

J Ginseng Res 2018;42:524e531530
healing of dermal wounds. As shown in Fig. 5A, the 25 mg/mL FBG-
treated group exerted accelerated wound healing compared with
the control mice. The enhancement of wound healing became
apparent from 2 d after initiation of treatment and became the
most evident after 4 d. As shown in quantitative results, treatment
with 25 mg/mL of FBG exhibited a statistically significant effect on
wound closure at 2 d, 4 d, 6 d, and 8 d after treatments compared
with control mice (Fig. 5B).

From the cell-based assays, it is evident that FBG increased the
HUVEC proliferation, tube formation, and cell migration of HaCaT
cells. FBG exerted significant angiogenic potential, which is asso-
ciated with phosphorylation of ERK and p38. Furthermore, in vivo
assays showed that FBG accelerates the process of wound healing in
experimental cutaneous wounds model in mice. Based on these
data, we conclude that FBG is a potent promoter of wound repair.
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