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Abstract Simultaneous determination of three methoxyflavones,

namely, cirsimarin (1), hispidulin (2), and cirsimaritin (3) in

selected Korean thistles was performed via reversed-phase high

performance liquid chromatography system. Compound 1 was

present in all the thistle species examined, whereas 2 and 3 were

only detected in Cirsium japonicum and C. japonicum var.

maackii (CJM). The concentration of compounds 1-3 in CJM

varied according to the time of harvest. Plants collected in the

spring (CJMS) and fall (CJMF) had the highest contents of 3 and

1, respectively. A lower content of 2 was observed in CJMF than

in CJMS. This indicates that seasonal variation affects the flavonoid

content of CJM. The results of this study show that CJM is an

excellent source of compounds 1-3 and it can potentially be

cultivated for industrial and pharmaceutical applications involving

these compounds.
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Introduction

Thistles are perennial plants belonging to the Astraceae family

that are characterized by their distinct spiny lanceolate leaves, and

flowers with colors ranging from white to purple. There are

approximately 250 thistle species distributed worldwide and ten of

them are found in Korea [1]. They are traditionally used for herbal

medicine preparations that include treatments for liver diseases,

hemorrhage, edema, and inflammation [2,3]. Recent studies have

revealed that thistles are rich in many bioactive compounds such

as terpenoids, phytosterols, fatty acids, alkaloids, and flavonoids

[4-7]. Particularly, flavonoids isolated from this genus have been

shown to possess various biological activities. For example,

pectolinarin and apigenin isolated from Cirsium japonicum exhibited

anti-tumor and anti-excitotoxic activities in mice, respectively;

pectolinarigenin from C. setidens exerted hepatoprotective and

neuroprotective effects, and luteolin-5-O-glucoside displayed anti-

inflammatory effects [8-12].

In our previous study, three methoxyflavones, namely, cirsimarin

(1), hispidulin (2), and cirsimaritin (3) were isolated from the

aerial parts of C. japonicum var. maackii (CJM) [13,14]. These

compounds have been shown to exhibit bioactive properties, and

thus have pharmacological importance [15-18]. Accordingly, the

aim of this study was to determine the distribution of these

compounds and quantify their contents in selected Korean thistles

by high performance liquid chromatography (HPLC) with

ultraviolet-visible detection. The results of this study will serve as

a basis for the quality evaluation and selection of Korean thistles

to be cultivated for industrial and pharmaceutical applications

involving these compounds.
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Materials and Methods

Plant materials and methanol extracts

Selected thistle species and varieties were analyzed in the study.

C. japonicum var. maackii (CJM) collected during spring (C.

japonicum var. maackii from spring: CJMS) and fall (C.

japonicum var. maackii from fall: CJMF) seasons were extracted

with methanol (MeOH) at 80 oC for 3 h and evaporated to

dryness. The MeOH extracts of samples from several thistle

species were procured from the Korea Research Institute of

Bioscience and Biotechnology. These samples were from the

species: C. japonicum (CJ), C. chlorepsis (CC1), C. chanroenicum

(CC2), Carduus crispus (CC3), C. nipponicum (CN), and C.

setidens (CS).

Instruments and reagents

HPLC analysis was performed using a Waters HPLC system

equipped with a binary pump and a UV-Vis detector (Milford,

MA, USA). All solvents used were HPLC grade including,

MeOH, acetonitrile (ACN), and water for the analysis.

Preparation of standard and sample solution

A stock solution containing a mixture of compounds 1-3 was

prepared by dissolving 1 mg of each standard compound together

in 1 mL MeOH (Fig. 1). Serial dilution of the stock solution was

performed to obtain the working solutions used for the

construction of calibration curves. MeOH extracts of the selected

thistles were prepared by dissolving 20 mg of each extract in 1

mL MeOH. All samples were filtered with a 0.45-µm filter prior

to use.

HPLC analytical conditions

HPLC analysis of compounds 1-3 was performed using a

reversed-phase HPLC system utilizing an INNO C18 (25 cm×4.6

mm, 5 µm) column with a mobile phase of 0.5% acetic acid-water

(solvent A) and ACN (solvent B). The total running time of the

analysis was 55 min and the gradient elution system was

performed as follows: 83% A at 0 min, decreased to 70% A

between 0-10 min and maintained until 25 min, 20% A at 30 min,

increased to 100% B between 30-35 min and maintained until 40

min, increased to 83% A between 40-50 min and maintained until

55 min. The flow rate, injection volume, and UV absorbance were

1 mL/min, 10 µL, and 270 nm, respectively. The temperature of

the column was held constant at 30 oC.

Calibration curve

Calibration curves were constructed by plotting the concentrations

of each standard solution with their respective peak areas. The

linearity of each calibration curve was determined based on the

correlation coefficient (r2). The concentrations of compounds 1-3

in the samples were calculated from the calibration curve of each

compound. The calibration functions were determined based on

the peak area (Y), concentration (X, µg/mL), and mean values

(n =5) ± standard deviation.

Results and Discussion

The simultaneous determination of compounds 1-3 in selected

Korean thistles was performed using a reverse-phase HPLC

system. The analytical method showed good linearity as displayed

in the calibration curves for each standard compound (Table 1).

The chromatographic separation of compounds 1-3 showed a high

resolution in all thistles examined (Fig. 2). The peaks of all

chromatograms were confirmed by spiking the HPLC samples

with the reference compounds and by UV comparison for

qualitative analysis. The concentrations and distributions of the

methoxyflavones in the samples analyzed are summarized in

Table 2. Compound 1 was present in all the thistles examined, and

the samples CJMS, CS, CN, and CC2 contained especially high

concentrations of the compound. Compounds 2 and 3 were only

detected in CJ, CJMS, and CJMF. Among the thistle species

examined, the presence of all three methoxyflavones in CJM is

Compound R1 R2

Cirsimarin (1) OCH3 O-Glc

Hispidulin (2) OH OH

Cirsimaritin (3) OCH3 OH

Fig. 1 Structures of compounds 1-3

Table 1 Calibration curves for compounds 1-3

Compound tR
a Calibration equationb Correlation factor, r2 c

Cirsimarin (1) 17.41 Y=2,000,000X+77,179 0.999

Hispidulin (2) 30.19 Y=2,000,000X+14,006 1.000

Cirsimaritin (3) 32.21 Y=1,000,000X+366,477 0.989

a
 tR=retention time

b Y=peak area, X=concentration of standard (mg/mL)
c 
r
2=correlation coefficient for three data points in the calibration curve
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Fig. 2 HPLC chromatograms of compounds 1-3 (A) and the MeOH extracts of CJMS (B), CJMF (C), CJ (D), CC1 (E), CC2 (F), CC3 (G), CN (H),

and CS (I)
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Fig. 2 Contined
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consistent with previous studies that investigated on its

phytochemistry [14]. The concentration of compounds 1-3 in

CJM varied according to the time of harvest as shown by the

differences in flavonoid content between the samples collected in

the spring (CJMS) and in the fall (CJMF). Particularly, the

concentration of 1 was highest in the samples harvested in the

spring while that of 3 was highest in the fall. This indicates that

seasonal variation affects the flavonoid content of CJM, which

should be taken into consideration to optimize the yield of these

compounds upon harvest. Especially because the reported biological

activities of CJM is attributed to the presence of compounds 1-3

in its extracts, and that variations in their yield can have profound

effects on the bioactivity of CJM. In our previous research works,

we have shown that compounds 1 and 2 from CJM confer

potential therapeutic effects against diabetes, as indicated by its

strong inhibitory effects on the polyol pathway which is a major

mechanism linked to the pathogenesis of diabetic complications

[13,19]. Moreover, compounds 1-3 in CJM has also been reported

to exhibit beneficial against menopausal symptoms in animal

models [18]. Moreover, the results showed that although CJ and

CJM belong to the same species, the two varieties showed distinct

flavonoid contents in that all three methoxyflavones were present

in CJM whereas 2 was absent in CJ. The contents of 1 and 3 were

also higher in CJM than in CJ. This indicates that the flavonoid

contents of CJ and CJM can be used to distinguish the two

varieties similar to a previous study in which C. setosum and C.

japonicum were differentiated from each other based on their

flavonoid contents [3].

There have been few studies on the chemical composition of

Korean thistles and this study provides new information regarding

the distribution and concentration of methoxyflavones in several

Korean thistle species. It was observed that compounds 1-3 are the

major constituents of CJM and therefore could be cultivated as a

source of these compounds for industrial and pharmaceutical

applications.
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